Core Skills Analysis

Physics

- Students learn about forces and equilibrium through the balancing act of constructing a sturdy bridge.
- They understand the principles of tension and compression as they experiment with different bridge designs.
- The activity offers insight into the concept of structural integrity and the effects of weight distribution on stability.
- They grasp basic concepts of physics by observing the consequences of load-bearing capacities and material choices in bridge construction.

Mathematics

- Students apply geometric principles such as angles and shapes in designing the bridge's support structures.
- They calculate the bridge's length, height, and width while maintaining proportionality.
- Understanding ratios and proportions becomes evident when adjusting the bridge's dimensions to ensure stability.
- Mathematical concepts like symmetry and patterns emerge as students create balanced and visually appealing bridge designs.

Engineering

- Through trial and error, students learn the engineering design process of planning, building, and testing.
- They explore different materials and their properties to determine which ones are best suited for bridge construction.
- The activity promotes problem-solving skills as students encounter challenges in structural integrity and load-bearing capacity.
- Students gain hands-on experience in applying engineering principles to create functional and durable bridge models.

Tips

Engage students in further exploration by encouraging them to research famous bridge designs or historical engineering feats. Encourage group discussions on how real-life engineers tackle bridge construction challenges. Prompt students to enhance their knowledge by experimenting with advanced construction techniques or introducing elements like arches and trusses to their bridge designs.

Book Recommendations

- <u>The Art of Construction: Projects and Principles for Beginning Engineers & Architects</u> by Mario Salvadori: This book offers a comprehensive guide to construction principles, perfect for students interested in learning more about building structures like bridges.
- Bridges: Amazing Structures to Design, Build & Test by Carol A. Johmann: An interactive book that provides hands-on activities and experiments for aspiring young engineers to understand the science behind bridge construction.
- <u>How Bridges Are Made</u> by Darlene R. Stille: A detailed exploration of the engineering and construction processes behind building bridges, ideal for students curious about the technical aspects of bridge design.