

# Lesson Plan: The Secret Life of Circuits (Ages 8-10)

## Materials Needed

- One 1.5V or 3V Battery (AA or D size)
- Optional: Battery holder (highly recommended for stability and safety)
- Two Insulated Wires (about 12 inches long each), ideally with alligator clips or stripped ends
- One small, low-voltage Light Bulb (like a flashlight bulb) or an LED light
- Small pieces of various test materials:
  - Conductors: Paperclip, aluminum foil, coin, metal key
  - Insulators: Plastic spoon, rubber band, eraser, piece of wood or cardboard
- Simple Circuit Diagram (visual aid)
- Recording sheet or notebook for testing results

## Learning Objectives

By the end of this lesson, learners will be able to:

1. **Define Electricity** using the concept of energy flow.
2. **Distinguish** between an open circuit and a closed circuit.
3. **Construct** a simple, functional closed circuit to power a light bulb.
4. **Classify** common materials as either conductors or insulators.

## Success Criteria

You know you are successful when:

- You can explain why the light bulb turns on.
- Your light bulb stays lit when you connect all the pieces correctly.
- You can correctly predict if a new object will block or let electricity pass through.

## A. Introduction (10 Minutes)

### Hook: Where Does the Power Go?

**Ask:** Imagine you are building a LEGO castle, and you need a light inside. You press the switch, and the light comes on! What exactly travels from the battery, through the walls, and into the bulb to make it shine? Where does the energy go?

**Teacher/Educator Talk (Storytelling):** Today, we are going to become electrical engineers! We are going to discover how to create a perfect path for energy using wires and batteries. We are learning the secret language of **circuits**.

### Introducing Key Terminology

- **Electricity:** Energy created by tiny moving particles (we can think of it as a flow of power, like a swift river).
- **Circuit:** A complete loop or circle that electricity must follow to do its work.

## B. Body: Building the Path (I Do, We Do)

### I Do: Modeling the Simple Circuit (15 Minutes)

#### Content Delivery: The Essential Components

Every simple circuit needs three things:

1. **The Energy Source:** Our battery (the power plant).
2. **The Path:** Our wires (the roads).
3. **The Load:** Our light bulb (the device that uses the energy).

#### Modeling Steps (Slow demonstration):

1. Show the battery (explain the positive (+) and negative (-) ends).
2. Connect one wire from the positive (+) terminal of the battery to one side of the light bulb.
3. Connect the second wire from the negative (-) terminal of the battery to the other side of the light bulb.
4. The light should turn ON.

#### Explain Open vs. Closed:

- **Closed Circuit:** When the path is complete, the electricity can flow easily from the positive end back to the negative end. (Light ON!)
- **Open Circuit:** If we disconnect one wire, the path is broken—like a bridge being washed out. The electricity stops. (Light OFF!)

### We Do: Guided Practice - Opening and Closing (10 Minutes)

#### Activity: Circuit Switch Practice

Ask the learner(s) to take the modeled circuit and practice opening and closing it. They should physically disconnect and reconnect one end of a wire to see the light turn on and off.

**Formative Assessment Check:** Ask the learner, "When the light is off, is this an open or closed circuit? Why?" (Look for the answer: Open, because the path is broken.)

## C. Body: Conductors and Insulators (You Do)

### I Do: Introducing New Concepts (5 Minutes)

**Teacher/Educator Talk:** Now that we know how to build a path, let's see what kinds of materials are helpful and what kinds are roadblocks!

- **Conductors:** Materials that are great at letting electricity flow through them (helpers). Wires are usually conductors (copper).
- **Insulators:** Materials that stop electricity from flowing (blockers). The plastic coating around a wire is an insulator, which keeps the electricity safely inside the path.

### You Do: Independent Practice - The Test Station (15 Minutes)

**Setup:** Create a gap in the closed circuit. This gap is where the test materials will go. Connect one wire

from the battery to the bulb, and leave the second wire hanging loose, ready to connect to a test object.

### Activity: Material Testing Challenge

1. Instruct the learner to pick a test item (e.g., a paperclip).
2. They place the item into the gap (touching the open wire end and the open battery/bulb end).
3. If the item is a conductor, it completes the loop, and the light should turn on!
4. If the item is an insulator, the loop remains open, and the light stays off.
5. Record the result in a simple table (Material | Light ON/OFF | Conductor/Insulator).

**Real-World Relevance Discussion:** Why are electrical cords usually plastic on the outside but metal on the inside? (Safety: Metal conducts electricity to the device; plastic insulates to protect people from shock.)

## D. Conclusion (10 Minutes)

### Closure and Recap

**Recap Challenge:** Quickly review the key vocabulary.

- What is the job of the battery? (Source/Power)
- If you break the circuit, what happens to the light? (It turns off; it's an open circuit.)
- Give me one example of a good conductor and one example of a good insulator.

### Summative Assessment: Final Build

Have the learner completely dismantle the circuit and then rebuild a closed circuit from scratch without prompting. Time them if appropriate, focusing on accurate connection.

**Success Criteria Review:** Did the bulb light up? If yes, the learner has demonstrated mastery of circuit building.

### Extensions and Differentiation

#### Scaffolding (For learners needing extra support):

- Use a battery holder with clearly marked positive/negative terminals and pre-attached wires (alligator clips are best).
- Focus only on building the closed circuit (skip the conductor/insulator testing, or only test two items).
- Use color-coded wires (e.g., red for positive, black for negative) to aid visual tracking.

#### Enrichment (For advanced learners):

- **Challenge Build:** Ask the learner to design and build a simple manual switch using two paper fasteners and a piece of cardboard or wood. The switch should break the circuit when opened.
- **Circuit Types:** Introduce the concept of a "series circuit" and discuss what happens if you add a second light bulb.